

AMERICAN COLLEGE OF SURGEONS

Inspiring Quality: Highest Standards, Better Outcomes

Courtesy of American College of Surgeons Division of Education Clinical Congress 2015

Necrotizing Soft Tissue Infections: Delays in Treatment

Addison K. May, MD FACS
Professor of Surgery and Anesthesiology
Division of Trauma and Surgical Critical Care
Vanderbilt University Medical Center

PS321: Necrotizing Soft Tissue Infections: Time Matters

Wednesday October 7, 2015

60 yo female with DM and HTN

Presents to ED ~36 hours after repair of contaminated LE laceration

- 10/10 pain
- LE swelling, erythema, ecchymosis
- Vitals: temp 98, HR 110, BP 107/76

1 hour after presentation

- Labs: WBC 13.8, HCT 50, Na 131, CO2 18,
 Glucose 348, Creat 2.05
- Plain X-ray: gas in tissue
- Broad spectrum IV antibiotics given

Courtesy of American College of Surgeons Division of Education Clinical Congress 2015

60 yo female with DM and HTN

- 3 hrs after presentation admit to OBSERVATION
- Admission diagnosis: <u>CELLULITIS</u>
- Bullous lesions documented
- 7.5 hrs after presentation transferred to higher level of care
- 9.5 hrs after presentation AKA

Died after several weeks in the hospital

Disclosures:

 Receive research funding and consultant for AtoxBio

Research funding from several pharmaceutical companies

No significant conflicts to disclose for this presentation

Infectious and inflammatory stimuli develop in non-linear fashion

The effects are not simply additive – geometric or exponential

• The greater the degree of cellular dysfunction, the more difficult

to repair/correct injury

 Intervene before severe dysfunction develops

Degree of cellular dysfunction

Courtesy of American College of Surgeons Division of Education Clinical Congress 2015

Simplified Model of Oxidant Stress in Sepsis, Shock, and Trauma

Mortality from NSTI is declining!

Mortality Tends in Published Series of Necrotizing Soft Tissue Infections							
Publication date:	Number of studies	Number of Cases	Number of deaths	Percent Mortality			
1980 through 1990	17	375	119	31.7%			
1991 through 2000	15	628	167	26.6%			
2001 through 2010	37	2670	565	21.2%			
2011 thought 2014	11	2508	394	15.7%			
Total 1980 - 2014	80	6181	1245	20.1%			

Treatment of NSTI

1. Resuscitation

- 2. Antibiotic therapy
- 3. Surgical debridement source control

Time to achieve each one matters!

Time to Resuscitation Matters

 Goal of resuscitation is the restoration of tissue perfusion and elimination of cellular

hypoxia

Use of Early Goal Targeted Resuscitation

Use of Early Goal Targeted Resuscitation

Time to Resuscitation Matters

Surviving Sepsis Campaign Resuscitation Bundle

Serum lactate measured.

Blood cultures obtained prior to antibiotic administration.

Broad-spectrum antibiotics administered within 3 hours for ED admissions and 1 hour for non-ED ICU admissions.

In the event of hypotension and/or lactate \geq 4 mmol/L:

Deliver an initial minimum of 20 mL/kg of crystalloid (or colloid equivalent)

Initiate vasopressor for hypotension not responding to initial fluid resuscitation to maintain mean arterial pressure (MAP) \geq 65 mmHg

Achieve central venous pressure (CVP) of \geq 8 mmHg

Achieve central venous oxygen saturation $ScvO_2 \ge 70\%$ or a mixed venous oxygen saturation (SvO2) $\ge 65\%$.

Time to Resuscitation Matters

Retrospective study before and after implementing SSC-RB

Before	After
DCIOIC	711

Patients in septic shock: 96 384

Mortality from sepsis: 57.3% 37.5%

- Regression model for risk of death: OR 0.5 (0.28-0.89)
- Compliance with six + components by 6 hrs: OR 0.3 (0.17-0.53)
- ScvO2 >70% by 6 hrs: OR 0.62 (0.38-0.99)

Courtesy of American College of Surgeons Division of Education Clinical Congress 2015

Increased Fluid Administration in the First Three Hours of Sepsis Resuscitation Is Associated With Reduced Mortality

A Retrospective Cohort Study

Sarah J. Lee, MD, MPH; Kannan Ramar, MBBS, MD; John G. Park, MD, FCCP; Ognjen Gajic, MD, FCCP; Guangxi Li, MD; and Rahul Kashyap, MBBS

- Retrospective analysis 594 pts with severe sepsis and septic shock
- Treatment directed by the SSC RB
- Greater fluid administration in the 1st 3 hours in SURVIVORS

	<u>Survivors</u>	Non-survivors	<u>p value</u>
1st 3 hrs:	2,085 ml	1,600 ml	0.007
2 nd 3 hrs:	660 ml	800 ml	0.09

Multivariate analysis: age, weight, SOFA, APACHE III, total fluid in 6 hrs

 \rightarrow higher fluid in 1st 3 hrs vs 2nd 3 hrs – OR 0.34 (0.15 – 0.75)

Metaanalysis of Quantitative Resuscitation in Sepsis

Study	Year	N^a	Overall Mortality (%)	Mortality Timing	Study Location	Patient Selection	Concealment	Jadad Score	Intervention Timing	Quantitative Resuscitation Group End points ^b
Early										
Lin	2006	224	61	Hospital	ICU	A	A	2	Early	CVP, MAP, UO
Rivers	2001	263	37	Hospital	ED	A	A	4	Early	ScvO ₂
Alia	1999	63	70	ICU	ICU	A	A	1	Early	DO_2I
Yu	1998	87	34	ICU	ICU	A	C	1	Early	DO_2
Yu	1993	52	19	30 day	ICU	A	В	1	Early	DO_2
Tuchschmidt	1992	51	61	14 day	ICU	A	C	2	Early	CI

Quantitative Resuscitation Strategy for Sepsis Review: Comparison: 01 Quantitative Resuscitation vs. Standard Care

Study or sub-category	Treatment n/N	Control n/N	OR (random) 95% CI	OR (random) 95% CI	Quality
01 Early	of the south	000 M/S (5)			
Lin 2006	58/108	83/116		0.46 [0.27, 0.80]	A
Rivers 2001	38/130	59/133		0.52 [0.31, 0.86]	A
Alia 1999	23/31	21/32		1.51 [0.51, 4.46]	A
Yu 1998	15/58	15/29 —		0.33 [0.13, 0.83]	C
Yu 1993	4/30	6/22 —	-	0.41 [0.10, 1.68]	В
Tuchschmidt 1992	13/26	18/25 —	-	0.39 [0.12, 1.24]	C
Subtotal (95% CI)	383	357	•	0.50 [0.37, 0.69]	
Total events: 151 (Treatr	ment), 202 (Control)				
Test for heterogeneity: C	$hi^2 = 5.12$, $df = 5$ (P = 0	(1.40) , $1^2 = 2.4\%$			

Treatment of NSTI

1. Resuscitation

2. Antibiotic therapy

3. Surgical debridement – source control

Time to the RIGHT Antibiotic Matters

Influence of Inadequate Empiric Antibiotic Therapy

Author	Setting	Relative increase in mortality						
Kollef	Mixed nosocomial ICU infections	133%						
Luna	Ventilator associated pneumonia	139%						
Alvarez- Lerma	Ventilator associated pneumonia	56%						
Rello	Ventilator associated pneumonia	131%						
Leibovici	Bloodstream infection	70%						
Ibrahim	Bloodstream infection	121%						
Mosdell	Intraabdominal infection	110%						
Burke	Intraabdominal infection	192%						
Montravers	Nosocomial intrabdominal infection	92%						

Time to Antibiotic Therapy Matters

- 2731 pts with septic shock (56% mortality)
- Time to AB Rx most strongly associated with outcome
- Each 1 hr delay → 12% increase in risk of death

Resuscitation and Antibiotics Cannot Replace Surgical Source Control

Courtesy of American College of Surgeons Division of Education Clinical Congress 2015

Time to surgical debridement matters!

Predictors of mortality by regression analysis in NSTI:

- Time to first debridement
- Extent of tissue involvement
- # Failed organs on admission
- Inadequate first debridement
- Age > 60 years
- Bacteremia
- Elevated lactate

McHenry CR. *Ann Surg.* 1995; 221:558-565 Bosshardt TL. *Arch Surg.* 1996;131:846-52 Elliott DC. *Ann Surg.* 1996; 224:672-83 Bilton BD. *Am Surg.* 1998; 64:397-400 Childers BJ. *Am Surg.* 2002; 68:109-116 Wong CH. *J Bone Joint Surg.* 2003; 85A:1454-1460

Time from admission to OR matters:

➤ Time from admission to OR independently associated with mortality

Author	<u>Year</u>	Finding:
– Lille	1996	> 24 hrs increased mortality
Elliott	1996	OR 1.27 - days admit to debridement
Wong	2003	RR 9.4 - > 24 hrs
– Liu	2005	> 24 hrs increased mortality
Golper	2007	OR 5.32 - > 24 hrs
		OR 2.18 - < 12 hrs vs > 24 hrs (p=0.07)

Does time always matter?

➤ Studies where time from admission to OR is <u>not</u> <u>associated</u> with mortality

– Anaya 2005

-Hsiao 2008

– Gunter 2008

NSTIs: a heterogenous group of infections!

Type 1: polymicrobial

- typically arise from a chronic, indolent source
- spread along fascial planes
- most common ~ 50-75% of NSTIs

Type 2: monomicrobial virulent Gm +, aerobic cocci

- Streptococcus species
- CA-MRSA
- pathophysiology related to toxin production

Type 3: monomicrobial virulent Gm + or Gm - bacilli

- Clostridia species
- Bacillus species
- Vibrio species
- Aeromonas species
- Eikenella species

pathophysiology related to toxin production and growth rate of pathogens

Courtesy of American College of Surgeons Division of Education Clinical Congress 2015

Rapidly progressive

Highly virulent pathogens associated with increased mortality:

- Group A strep (Childers-2002, Golper 2007)
 - Gram positive antiribosomal agent Clindamycin
- Clostridia (Anaya-2005)
 - Gram positive antiribosomal agent Clindamycin
- Aeromonas and Vibrio (Hsiao-2008)
 - Gram negative antiribosomal agent tetracycline class

Time to OR decreasing over time

Author	Year	# Cases	Mortality	Hours from admission to OR
McHenry	1995	65	29%	40 hours
Elliott	1996	198	25%	41 hours
Anaya	2005	166	17%	23 hours
Hsiao	2008	128	19%	60 hours
Gunter	2008	52	10%	9 hours

Does time to re-debridement matter?

- 64 patients with NSTI at USC-LAC over 6 years
- Practice algorithms by 2 different services
 - Short duration (24-48 hrs) vs Extended duration (> 48 hrs) until second debridement
- Short duration associated with lower AKI and mortality

Table 4. Comparison of Outcomes in Patients with Necrotizing Soft Tissue Infection Subjected to SIRD vs EIRD*

	All Patients $(n = 64)$	$ SIRD \\ (n = 46) $	$ EIRD \\ (n = 18) $	P Value	AOR (95% CI)	P Value
ICU admission	50/64 (78.1%)	38/46 (82.6%)	12/18 (66.7%)	0.190	0.6 (0.2–2.3)	0.433
Operative débridements; mean ± SEM	4.2 ± 2.8	4.5 ± 2.7	3.4 ± 3.1	0.197	-0.8 (-2.4 to 0.9)	0.356
ICU LOS (days); mean ± SEM	10.3 + 1.2	10.0 + 1.1	10.9 + 3.2	0.842	2.6 (-2.8 to 8.0)	0.344
HLOS (days); mean ± SEM	34.0 ± 3.7	36.5 ± 4.7	26.2 ± 5.2	0.237	-4.5 (-21.6 to 12.6)	0.601
Complications						
Septic shock	14/64 (22.2%)	8/45 (17.4%)	6/18 (33.3%)	0.197	3.1 (0.8–11.7)	9.093
Acute kidney injury	10/64 (15.9%)	4/46 (8.7%)	6/18 (33.3%)	0.026	4.7 (1.0–21.6)	0.046
Other†	7/64 (11.1%)	5/46 (10.9%)	2/18 (11.1%)	0.998	1.0 (0.1–6.2)	(12473)
Mortality	9/64 (14.1%)	3/46 (6.5%)	6/18 (33.3%)	0.012	14.9 (2.4–94.1)	0.004

Treatment of NSTI: TIME MATTERS

1. Resuscitation

2. Antibiotic therapy

3. Surgical debridement – source control

AMERICAN COLLEGE OF SURGEONS

Inspiring Quality: Highest Standards, Better Outcomes

Thank you for your attention